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We derive a Hamiltonian control theory which can be applied to a 4D symplectic map that
models a ring particle accelerator composed of elements with sextupole nonlinearity. The
controlled system is designed to exhibit a more regular orbital behavior than the uncon-
trolled one. Using the Smaller Alignment Index (SALI) chaos indicator, we are able to show
that the controlled system has a dynamical aperture up to 1.7 times larger than the original
model.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Particle accelerators are technological devices which allow studies at both ‘‘infinitely small scale’’, e.g. particles respon-
sible for elementary forces, and ‘‘extremely large scale’’, e.g. the origin of cosmos. In a simplified approach, such devices are
composed of basic elements sequence: focusing and defocusing magnets, accelerating electromagnetic fields and trajectory
bending elements as they are used in the case of ring accelerators. The resulting dynamics is nonlinear, and can be described,
in the absence of strong damping, by a conservative system. This system can be modeled by a symplectic map built from the
composition of several elementary maps corresponding to each basic magnetic element.

One of the main problems found in the dynamics of ring accelerators is to study the stability around the nominal orbit, i.e.
the circular orbit passing through the centre of the ring. Each component of the ring can be seen as a nonlinear map, that
deforms the trajectory at large amplitude. Moreover, such maps possess stochastic layers whose effect is the reduction of
the stability domains around the nominal circular orbit (the so-called dynamical aperture – DA) [1]. Such behaviors imply
that (chaotic) nearby orbits can drift away after a few ring turns, eventually colliding with accelerator’s boundaries, and con-
sequently reduce the beam lifetime and the performance of the accelerator.

The aim of the present paper is to derive a reliable improvement of the stability of the beam by increasing the DA in a
simplified accelerator model, consisting of only one type of element having a sextupole nonlinearity [2–5].

We work in the framework of the Hamiltonian control theory presented in [7,8], where two methods to control symplectic
maps have been described, namely using Lie transformations and generating functions. In the present paper we use the
. All rights reserved.

Boreux), timoteo.carletti@fundp.ac.be (T. Carletti), hskokos@pks.mpg.de (Ch. Skokos), vittot@cpt.

http://dx.doi.org/10.1016/j.cnsns.2011.09.037
mailto:jehan.boreux@fundp.ac.be
mailto:timoteo.carletti@fundp.ac.be
mailto:hskokos@pks.mpg.de
mailto:vittot@cpt.       univ-mrs.fr
mailto:vittot@cpt.       univ-mrs.fr
http://dx.doi.org/10.1016/j.cnsns.2011.09.037
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


1726 J. Boreux et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 1725–1738
former method, that allows direct determination of the new controlled map; avoiding the possible problems related to coor-
dinate inversion.

The aim of control theory is to improve selected features of a given system, by slightly modifying its Hamiltonian with the
addition of a small control term, so that the new system and the unperturbed one are conjugated namely, they have the same
dynamics. This technique is particularly suitable whenever one can directly act on the system and modify it, e.g. in the case
of a particle accelerator where the addition of a control term in the Hamiltonian function can be seen as the introduction of a
suitable magnet in the accelerator lattice.

In our study, we use the Smaller Alignment Index (SALI) [6,10–12] method, which is an efficient indicator for character-
ising orbits as chaotic or regular in Hamiltonian flows and symplectic maps. The SALI is computed using the time evolution of
two deviation vectors along the studied orbit.

The paper is organized as follows: we introduce the model in Section 2 and present a general result for the control of sym-
plectic maps in Section 3. We apply the theory to the symplectic map model of a standard ring accelerator in Section 4. We
briefly recall the SALI chaos indicator in Section 5, while Section 6 presents our numerical results on the behavior of the con-
structed model. Finally, in Section 7 we summarize our conclusions. Further technical details can be found in Appendix A.

2. The model

Let us consider a system consisting of a charged particle and a simplified accelerator ring with linear frequencies (tunes)
qx, qy, with a localized thin sextupole magnet (for more details the interested reader is referred to [2]). The magnetic field of
this element modifies the orbit once the particle passes through it. The basic model is:
1 Suc
2 In t
x01
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x04

0
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1
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cos x1 � sinx1 0 0
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0
BBB@

1
CCCA; ð1Þ
where x1(x3) denote the deflection from the ideal circular orbit in the horizontal (vertical) direction before the particle enters
the element and x2(x4) are the associated momentum. Primed variables denote positions and momenta after the particle left
the element. The parameters x1 and x2 are related to the accelerator’s tunes1 qx and qy by the relations x1 = 2pqx and x2 = 2
pqy. The first matrix in (1) describes the linear motion of a particle, which corresponds to a simple rotation in the phase space.
The nonlinearity induced by the thin sextupole magnet is modeled by the 2nd order polynomial expression in (1). The particle
dynamics at the nth turn, can be described by the sequence xðnÞ1 ; xðnÞ2 ; xðnÞ3 ; xðnÞ4

� �
nP0

, where the (n + 1)th positions and momenta
are defined as a function of the nth ones by (1).

The map (1) decomposes in an integrable part and a quadratic perturbation, respectively the system is associated to the
following Hamiltonian (see Appendix A)
Hðx1; x2; x3; x4Þ ¼ �x1
x2

1 þ x2
2

2
�x2

x2
3 þ x2

4

2
and Vðx1; x2; x3; x4Þ ¼ �

x3
1

3
þ x1x2

3; ð2Þ
more precisely (1) can be written in terms of Poisson brackets2 as
~x0 ¼ Tð~xÞ ¼ efHgefVg~x: ð3Þ
Here~x ¼ ðx1; x2; x3; x4ÞT, with T denoting the transpose of a matrix, and by definition, for any function f defined in the phase

space, {H}f = {H, f} = (rH)TJrf, with J ¼ 0 1
�1 0

� �
, being the symplectic constant matrix,
efHgf ¼
X
nP0

fHgn

n!
f and fHgnf ¼ fHgn�1ðfHgf Þ: ð4Þ
Maps of the form (1) have already been studied in [6] where it has been shown that chaotic orbits reduce the DA to a
hypersphere of radius �0.39 in the 4-dimensional phase space (see Figs. 5 and 6 of [6]). The goal of the present paper is
to show that the stability region of the nominal circular orbit can be increased once the map (1) is controlled by an
appropriately designed map.

3. Control theory for symplectic maps

The aim of Hamiltonian theory is to provide mathematic tools to be able to modify the dynamics of a symplectic system.
With this, it is possible to manipulate intrinsic features, e.g. to reduce the chaotic regions in phase space or to build invariant
tori.
h parameters have been fixed throughout this work to the values qx = 0.61803 and qy = 0.4152, corresponding to a non-resonant condition (see [5]).
he literature one can sometimes find the alternative equivalent notation {H} = LH.
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In the following we will be interested in controlling a quasi-integrable symplectic map in such a way that it will allow us
to obtain a new, controlled map ‘‘closer’’ to the integrable part of the original map, and thus increase the stability region
around the nominal circular orbit. This is of great importance since chaos diffusion channels in phase space with unpredict-
able consequences in configuration space. The controlled map is expected to have a smaller number of escaping orbits and a
larger region occupied by invariant curves in a neighbourhood of the origin. For this purpose, we apply the method presented
in [8], with the modification that in the present case the integrable part is not expressed in action-angle variables. In par-
ticular, the integrable part is a rotation, so the present theory applies to perturbations of rotations, instead of maps close
to identity.

Let us consider an integrable symplectic map defined through its infinitesimal generator3 H
3 In [
~x0 ¼ efHg~x ð5Þ
and consider the quasi-integrable map perturbation of the former
~x0 ¼ Tð~xÞ ¼ efHgefVg~x; ð6Þ
where~x 2 R2N and V is a perturbation, namely V = o(H). The aim of Hamiltonian control theory, is to construct a third map,
the control map, whose generator F is small (it satisfies F = o(V)). The controlled map
Tctrl ¼ efHgefVgefFg; ð7Þ
will be conjugated to a map T⁄, closer to e{H} than T (see (11) below). We note that the use of the exponential of a Poisson
bracket, ensures that such maps are symplectic by construction.

To be more precise, let us define the unperturbed map
A�1 ¼ e�fHg ð8Þ
and observe that ð1�A�1Þ is not invertible, since its kernel contains any smooth function of H. Thus we assume the existence
of a ‘‘pseudo-inverse’’ operator, G, that should satisfy (see [8] for details)
Gð1�A�1ÞG ¼ G: ð9Þ
At this point we can define the non-resonant and the resonant operators
N :¼ ð1�A�1ÞG and R :¼ 1�N ; ð10Þ
which are projectors, i.e. N 2 ¼ N and R2 ¼ R.
Our main theoretical result can be stated in the following theorem:

Theorem 3.1. Under the above hypotheses and defining S ¼ GV we have
efSgTctrle�fSg ¼ efHgefRVg :¼ T�; ð11Þ
where
Tctrl ¼ efHgefVgefFg ð12Þ
with a control term given by
efFg ¼ e�fVgefðN�GÞVgefRVgefGVg: ð13Þ
Remark 3.2 (Warped addition). Let us define as in [8] the warped addition, {A} � {B}, of two operators by
efAgefBg :¼ efAg�fBg: ð14Þ
An explicit formula can be obtained using the Baker-Campbell-Hausdorff formula [9], where {A} � {B} is a series whose first
terms are
fAg � fBg ¼ fAg þ fBg þ 1
2
ðfAgfBg � fBgfAgÞ þ � � � ; ð15Þ
hence the warped addition is a deformation of the usual addition between operators.
Proof. Using this warped addition, we can rewrite the controlled map into the form
Tctrl ¼ efHg�fVg�fFg; ð16Þ
8] a similar theory has been developed for a general symplectic map devoid of an infinitesimal generator.
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where the control term (13) becomes
fFg ¼ �fVg � fðN � GÞVg � fRVg � fGVg: ð17Þ
From (10) we have:
N � G ¼ �A�1G: ð18Þ
One can easily prove (see Appendix A of [8]) that
ð�fHgÞ � ð�fSgÞ � fHg ¼ �fA�1Sg; ð19Þ
hence, recalling the definition of S and (18), we can rewrite (17) as
fFg ¼ �fVg � ð�fHgÞ � ð�fSgÞ � fHg � fRVg � fSg: ð20Þ
By rearranging the terms we can easily get
fSg � fHg � fVg � fFg � ð�fSgÞ ¼ fHg � fRVg; ð21Þ
which is nothing but (11) rewritten using the warped addition. h
Remark 3.3. Let us observe that the control term is, as required, small compared to V. In fact from (17) and by using the
approximated formula for the warped addition (15), we obtain
fFg ¼ �fVg � fðN � GÞVg � fRVg � fGVg ð22Þ
¼ �fVg þ fNVg � fGVg þ fRVg þ fGVg þ oðVÞ ¼ oðVÞ; ð23Þ
where we use the relation N þR ¼ 1.
Under the assumption of absence of resonances, i.e. RV ¼ 0, the o(V) term in the control map can be explicitly computed

to give (see Appendix A)
F ¼ 1
2
fVgGV þ oðV2Þ: ð24Þ
4. The control term for the non-resonant map

In this section we derive the controlled map presented in Section 3 in case of maps of the form (1). To implement the
theory we need to diagonalize the operator {H}. For this reason we introduce complex variables
f1 ¼ x2 þ ix1 and f2 ¼ x4 þ ix3 ð25Þ
and rewrite H as
Hðf1; f2Þ ¼ �
x1

2
jf1j2 �

x2

2
jf2j2: ð26Þ
The Poisson bracket with H now takes the form
fHg ¼ ix1ð�f1@�f1
� f1@f1 Þ þ ix2ð�f2@�f2

� f2@f2 Þ: ð27Þ
Hence, for any ~n ¼ ðn1;n2Þ 2 N2 and ~m ¼ ðm1;m2Þ 2 N2 we obtain
fHgf~n�f~m ¼ iðx1m1 �x1n1 þx2m2 �x2n2Þf~n�f~m ¼ i~x � ð~m�~nÞf~n�f~m: ð28Þ
Here we introduced the vector ~x ¼ ðx1;x2Þ and use the compact notation f~n ¼ fn1
1 fn2

2 for the complex vector f = (f1,f2). The
operator {H} is diagonal in these variables and thus map (8) is straightforwardly obtained as
A�1f~n�f~m ¼ e�fHgf~n�f~m ¼ e�i~x�ð~m�~nÞf~n�f~m: ð29Þ
Once we have this map, we can compute the operators G; N and R. For all ~n and ~m 2 N2 n f0g, such that ~n – ~m and
~x � ð~m�~nÞ – 2kp 8k 2 Z ð30Þ
(which defines the non-resonance condition), we get
Gf~n�f~m ¼ 1
1� e�i~x�ð~m�~nÞ N f~n�f~m; ð31Þ
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with
4 An

and N =
N f~n�f~m ¼ f~n�f~m if ~x � ð~m�~nÞ – 2kp 8k 2 Z;

0 otherwise:

(
ð32Þ
In the rest of the paper, we will assume the above non-resonant condition (30) to hold for the considered values of qx and
qy. Let us remark that this is not a limitation of the actual theory, but just a working assumption. We could equivalently have
chosen to work in the resonant regime, using a different control term suitable for resonant dynamics.

The explicit computations are as follows: first we need to express V in terms of complex variables; next we compute
S ¼ GV , and transform back to the original variables. Finally we compute the exponential efGVg. Actually, even if GV is a poly-
nomial of degree three in the variables x1, x2, x3, x4 the map efGVg is given by an infinite series. The terms of this series can be
sequentially computed, but the degree of complexity (i.e. the number of involved terms) increase very fast. To simplify the
computations we decided to use the approximated generator of the control map (24) already truncated at order 2
F2 ¼
1
2
fVgGV : ð33Þ
We note that F2 is composed by about 20 terms. A detailed discussion of the whole procedure needed to obtain F2, as well as
its explicit formula, are presented in Appendix A.

We now face another difficulty, namely the computation of the control map from the generator F2. This is equivalent to
perform the sum
efF2g ¼ 1þ fF2g þ
1
2
fF2g2 þ � � � ; ð34Þ
whose complexity once again grows very fast. We thus introduce a second approximation to our construction, by computing
only a finite number of terms in the above sum. So, we define a truncated control map of order k
CkðF2Þ ¼
Xk

l¼0

fF2gl

l!
ð35Þ
and a truncated controlled map of order k
TkðF2Þ ¼ efHgefVgCkðF2Þ ¼ TCkðF2Þ: ð36Þ
Since the exact control map efF2g given by (34) is symplectic, the controlled map (7) will also be symplectic. On the other
hand, we cannot expect the kth order control map Ck(F2) to be symplectic. We know that a map is symplectic if its Jacobian
matrix A verifies (in its definition domain) the equality
ATJA� J ¼ 0; ð37Þ
Thus, in order to check the symplecticity defect of Tk(F2) we compute the norm Dk of matrix AT
kJAk � J, where Ak is the Jacobian

of Tk(F2) given by (36). The results are presented in Fig. 1 for orders k = 1 up to k = 5, in the region (x1,x3) 2 [�1,1] � [�1,1],
x2 = x4 = 0. The results indicate that Tk(F2) is a good approximation of a symplectic map for k P 4, because we get Dk [ 10�4

for a large portion ( J 53%) of variables values. We note that in the central region of the truncated controlled map, where the
actual physical process of beam’s evolution occurs, the symplectic character of the map is established even better since there
Dk [ 10�8. As expected, the larger the order k, the closer to symplecticity the approximation is.

The main objective of the addition of a control term is to increase the size of the stability region around the central peri-
odic orbit. This increase leads to decrease the number of escaping orbits,4 as we can see from the results presented in Fig. 2,
where we plot in black the initial conditions on the square (x1,x3) 2 [�1,1] � [�1,1], x2 = x4 = 0, giving rise to orbits that do not
escape up to 105 iterations of the map. In particular, we consider in Fig. 2(a) the original uncontrolled map (1), and in Figs. 2(b)–
(d), the k order controlled map Tk(F2) for k = 1 to k = 5, respectively. One can easily see that the region of non-escaping orbits for
the original map is smaller than the one of the controlled maps. This observation can be quantified by considering initial con-
ditions inside a circle centered at the origin of each panel of Fig. 2 (which represent the actual physical plane since the initial
momenta are xð0Þ2 ¼ xðkÞ4 ¼ 0) with radius r2 ¼ xð0Þ1

2
þ xð0Þ3

2
, and evaluate the number of escaping and non-escaping orbits as a

function of the circle radius for Tk(F2) with k = 1 up to k = 5. Results reported in Fig. 3 support the previous claim, by clearly
showing that controlled maps of orders 3, 4 and 5 behave very similarly and lead to an increase of the non-escaping region.
Let us note that the behavior of the controlled maps of orders k = 1 (Fig. 2(b)) and k = 2 (Fig. 2(c)) is somewhat misleading if
it is not analyzed together with the information from the symplecticity defect (see Fig. 1(a) and (b), respectively). In fact, these
maps are strongly dissipative and produce a strong shift of orbits towards the origin, preventing them from escaping. This dis-
sipation effect is not physical, as it is not observed in real accelerators, and therefore we do not discuss further the k = 1 and k = 2
controlled maps.
orbit xðkÞ1 ; xðkÞ2 ; xðkÞ3 ; xðkÞ4

� �
06k6N

is defined as non-escaping if for all k 6 NxðkÞ1

2
þ xðkÞ2

2
þ xðkÞ3

2
þ xðkÞ4

2
6 R2 for a certain R (in the simulations we used R2 = 10

104, 105) and escaping otherwise.
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value of log10Dk: the darker the color, the smaller the value of log10Dk is, and hence the closer the map is to a symplectic one.
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Fig. 2. Non-escaping regions of controlled map Tk(F2) as a function of the truncation order k. 16000 uniformly distributed initial conditions in the square
(x1,x3) 2 [�1,1] � [�1,1], xð0Þ2 ¼ xð0Þ4 ¼ 0 are iterated up to n = 105 using (a) the uncontrolled map (1) and (b)–(f) the k = 1 to k = 5 order controlled map Tk(F2)
(36), respectively. Initial conditions corresponding to non-escaping orbits up to n = 105 are coloured in black, while escaping orbits are colored in white.

1730 J. Boreux et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 1725–1738



0 0.5 1 1.2
0

25

50

75

100

r

%

k=1
k=2
k=3
k=4
k=5

Fig. 3. Percentages of non-escaping orbits for the controlled map Tk(F2) (36) as a function of the distance from the origin in the physical space (x1,x3). We
iterate initial conditions in a circle of radius r centred at the origin of plane (x1,x3), with xð0Þ2 ¼ xð0Þ4 ¼ 0, and compute the percentages of non-escaping orbits
during n = 105 iterations, for the controlled map Tk(F2) with k = 1,2,3,4,5, as a function of r.

J. Boreux et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 1725–1738 1731
From the results of Figs. 2 and 3 we see that the addition of even the lower order (k = 3) control term, having an acceptable
symplecticity defect, increases drastically the size of the region of non-escaping orbits around the central periodic orbit. A
further increase of the order of the control term results to less significant increment of this region, while the computational
effort for constructing the controlled map increases considerably. In fact, T1(F2) contains around 100 elementary terms, i.e.
monomials in x1. . .x4, while this number is almost doubled for each order, so that T5(F2) contains around 2000 terms. Also the
CPU time needed to evolve the orbits increases with the order. For example, while the integration of one orbit using T1(F2)
takes about 1.4 times the CPU time needed to integrate the original map (1), the use of T5(F2) needs almost 21.5 times more.

Thus we conclude that the T4(F2) controlled map, which can be considered quite accurately to be symplectic, is sufficient
to get significant increment of the percentage of non-escaping orbits, without paying an extreme computational cost.
5. The SALI method

The Smaller Alignment Index (SALI) [10] has been proved to be an efficiently simple method to determine the regular or
chaotic nature of orbits in conservative dynamical systems. Thanks to its properties, it has already been successfully distin-
guished between regular and chaotic motion both, in symplectic maps and Hamiltonian flows [11–15].

For the sake of completeness, let us briefly recall the definition of the SALI and its behavior for regular and chaotic orbits,
restricting our attention to 2N-dimensional symplectic maps. The interested reader can consult [10] for a more detailed
description. To compute the SALI of a given orbit of such maps, one has to follow the time evolution of the orbit itself
and also of two linearly independent unitary deviation vectors v̂ ð0Þ1 ; v̂ ð0Þ2 . The evolution of an orbit of a map T is described
by the discrete-time equations of the map
~xðnþ1Þ ¼ Tð~xðnÞÞ; ð38Þ
where~xðnÞ ¼ xðnÞ1 ; xðnÞ2 ; . . . ; xðnÞ2N

� �T
, represents the orbit’s coordinates at the nth iteration. The deviation vectors ~v ðnÞ1 ;~v ðnÞ2 at time

n are given by the tangent map
~v ðnþ1Þ
i ¼ Að~xðnÞÞ �~v ðnÞi ; i ¼ 1;2; ð39Þ
where A denotes the Jacobian matrix of map (38), evaluated at the points of the orbit under study. Then, according to [10] the
SALI for the given orbit is defined as
SALIðnÞ ¼ min v̂ ðnÞ1 þ v̂ ðnÞ2

��� ���; v̂ ðnÞ1 � v̂ ðnÞ2

��� ���n o
; ð40Þ
where k�k denotes the usual Euclidean norm and v̂ i ¼ ~v i
k~v ik

; i ¼ 1;2 are unitary normalised vectors.
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In the case of chaotic orbits, the deviation vectors v̂1; v̂2 eventually become aligned in the direction defined by the max-
imal Lyapunov characteristic exponent (LCE), and SALI (n) falls exponentially to zero. An analytical study of SALI’s behavior
for chaotic orbits was carried out in [12] where it was shown that
Fig. 4.
integra
scale re
denotes
SALIðnÞ / e�ðr1�r2Þn ð41Þ
with r1, r2 being the two largest LCEs.
On the other hand, in the case of regular motion the orbit lies on a torus and the vectors v̂1; v̂2 eventually fall on its tan-

gent space, following a n�1 time evolution, having in general different directions. This behavior is due to the fact that for
regular orbits, the norm of a deviation vector increases linearly in time. Thus, the normalization procedure brings about a
decrease of the magnitude of the coordinates perpendicular to the torus, at a rate proportional to n�1, and so v̂1; v̂2 even-
tually fall on the tangent space of the torus. In this case, the SALI oscillates about non-zero values (for more details see [11]).

The simplicity of SALI’s definition, its completely different behavior for regular and chaotic orbits and its rapid conver-
gence to zero in the case of chaotic motion are the main advantages that make SALI an ideal chaos detection tool. Recently
a generalization of the SALI, the so-called Generalized Alignment Index (GALI) has been introduced [16,17], which uses infor-
mation of more than two deviation vectors from the reference orbit. Since the advantages of GALI over SALI become relevant
in the case of multi-dimensional systems, in the present paper we apply the SALI method for the dynamical study of the 4D
map (1).
6. Dynamics of the controlled map

As already mentioned, the goal of constructing the controlled map Tctrl = Te{F} is to increase the percentage of regular orbits
up to a given (large) number of iterations, or equivalently increase the size of the stability region around the nominal circular
trajectory (i.e. the DA). Because the presence of chaotic regions can induce a large drift in the phase space, that eventually
could lead to the escape of orbits, the achievement of a larger DA can be qualitatively inspected by checking via the SALI
method the regular or chaotic nature of orbits in a neighborhood of the origin (see Fig. 4). We note that we define an orbit
to be chaotic whenever SALI (t) < 10�8, and regular for the contrary.
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Stability analysis in the (x1,x3) plane. 16000 uniformly distributed initial conditions in the square ðx1; x3Þ 2 ½�1;1� � ½�1;1�; xð0Þ2 ¼ xð0Þ4 ¼ 0 are
ted using the T3(F2) ((a) and (b)), and the T4(F2) controlled map ((c) and (d)), up to n = 104 ((a) and (c)) and n = 105 iterations ((b) and (d)). The gray
presents the value of log10SALI for each orbit at the end of the integration time. The lighter the color the more stable is the orbit, while white color
that an orbit escaped before the total number of iterations was reached. The black circle indicate the initial condition of the orbit studied in Fig. 5.



103 104 105
10−10

10−8

10−6

10−4

10−2

100

n

SA
LI

(b)

(r)

Fig. 5. Dynamics of two orbits with the same initial conditions for the 3rd and 4th order controlled maps. Time evolution of the SALI for the orbit with initial
conditions ~xð0Þ ¼ ð�0:50;0;�0:65;0ÞT (see Fig. 4), using the T3(F2) [(r) red curve] and the T4(F2) controlled map [(b) blue curve]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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In Fig. 4 (which should be compared with Fig. 5 of [6]) we observe a strong enlargement of the region of regular orbits.
This region is characterized by large SALI values. In particular, for 104 iterations of the T4(F2) map, 54% of the considered or-
bits are regular, while for the uncontrolled map this percentage reduces to 33%. This improvement can be also confirmed by
visual inspection of Fig. 2, where the regions of non-escaping orbits are shown for different orders of the controlled map (36).

In Fig. 4(a) and (b) we see that there exist orbits of the T3(F2) map, which are characterized as regular up to n = 104 iter-
ations, while they show their chaotic character once they are iterated up to n = 105. Such orbits correspond to the dark re-
gions marked by a black circle in Fig. 4(b) (for comparison this circle is also plotted in all panels of Fig. 4). This discrepancy is
absent for the T4(F2) map, which shows almost the same geometrical shape for the non-escaping region when we pass from
104 to 105 iterations. In order to better understand this behavior we followed the evolution of a single orbit with initial con-
dition~xð0Þ ¼ ð�0:50;0;�0:65;0ÞT –inside the black circle in Fig. 4 – for both the T3(F2) and the T4(F2) controlled maps, com-
puting the corresponding SALI values up to 2 � 105 iterations. The results are reported in Fig. 5 and clearly show that the
orbit behaves regularly up to n 	 105 iterations of the T3(F2) map, since its SALI values are different from zero, but later
on a sudden decrease of SALI to zero denotes the chaotic character of the orbit. This behavior clearly implies this is a slightly
chaotic, sticky orbit, which remains close to a torus for long time intervals (n 	 105), while later on it enters a chaotic region
of the phase space. It is interesting to note that iterating the same initial condition by the T4(F2) map we get a regular
behavior at least up to n = 2 � 105.
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Fig. 6. Dynamical aperture of the (a) original map (1) and (b) the T4(F2) controlled map (36). The percentages of regular [(b) blue curves], escaping [(g) green
curves] and chaotic [(r) red curves] orbits after n = 104 (dashed curves) and n = 105 iterations (solid curves) for initial conditions in a 4D sphere centred at
the origin x1 = x2 = x3 = x4 = 0, as a function of the sphere radius r. Each point corresponds the average value over 5000 initial conditions. The largest radius at
which the percentage of regular orbits is still 100%, is marked by an arrow in each panel. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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In order to provide additional numerical evidence of the effectiveness of the controlled map (36) in increasing the DA, we
consider initial conditions inside a 4D sphere centered at the origin x1 = x2 = x3 = x4 = 0 of the map, with radius,
r2 ¼ xð0Þ1

2
þ xð0Þ2

2
þ xð0Þ3

2
þ xð0Þ4

2
. We compute the number of regular, escaping and chaotic orbits as a function of the sphere ra-

dius. The corresponding results are reported in Fig. 6(b), while in Fig. 6(a) we reproduce Fig. 6 of [6] for comparison. From
this figure we observe a strong increase of the DA, since the largest sphere containing 100% regular orbits has a radius
r 	 0.66, while this radius was r 	 0.39 for the original uncontrolled map. We also observe that increasing the total number
of iterations from 104 to 105 (dashed and solid lines in Fig. 6 respectively) increases the percentage of chaotic orbits, but the
radius of the 4D sphere containing only regular orbits does not change significantly.
7. Conclusions

In this paper we considered a simple model of a ring particle accelerator with sextupole nonlinearity that can be de-
scribed by a symplectic map. In the framework of Hamiltonian control theory, we were able to control the dynamics of
the original system, by providing a suitable control map, resulting in a small ‘‘perturbation’’ of the initial map. This control
map has been constructed with the aim of DA enlargement of the particle accelerator, and thus improving the beam’s life-
time and the accelerator’s performance.

In particular, the theoretical framework we developed allows a 1-parameter family of approximated controlled maps. We
performed several numerical simulations in order to choose ‘‘the best’’ approximated controlled map Tk(F2) (36), taking into
account the complexity of the map, i.e. the number of terms by which it is composed, the CPU time needed to perform the
numerical iteration of orbits, and the accuracy of the results in terms of the symplectic character of the map. We find that the
4th order controlled map T4(F2) is an optimal choice for the controlled system.

Using this controlled map we succeeded in achieving our initially set goal, since the T4(F2) map exhibits a DA with a radius
more than 1.7 times larger than the one for the original map (see Fig. 6).
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Appendix A. Computation of the control term

The aim of this section is to introduce further details for the construction of the control term and of the controlled map,
and to provide explicit formulas for the interested reader.

A.1. Notations

Let us first introduce some notations and recall some useful relations.


 Lie brackets and operators. Let X be the vector space of C1 real or complex functions of 2N variables (p,q). For any
F; G 2 X , the Lie bracket is given by
fF;Gg :¼
XN

i¼1

½@pi
F@qi

G� @qi
F@pi

G�; ðA:1Þ
where @xi
f � @f

@xi
denotes the partial derivative with respect to the variable xi.

Using the above definition, we can define a linear operator, induced by an element F of X , acting on X
fFg : X ! X ;
G # fFgG :¼ fF;Gg:

ðA:2Þ
This operator is linear, antisymmetric and verifies the Jacobi identity
8F;G 2 X ffFgGg ¼ fFgfGg � fGgfFg: ðA:3Þ

 Exponential. We define the exponential of such an operator {F}, by
efFg :¼
X1
k¼0

fFgk

k!
; ðA:4Þ
which is also an operator acting on X . The power of an operator is the composition: {F}kG = {F}k�1({F}G).
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We observe that in the case of the Hamiltonian function H, the exponential provides the flow, namely e{H}x0 = x(t), of the
Hamilton equations
_p ¼ �@qH;
_q ¼ @pH:

�
ðA:5Þ

 Vector field. The action of the above defined operators, can be extended to vector fields ‘‘component by component’’
8F;G;H 2 X ; fFg
G

H

� �
:¼

fFgG
fFgH

� �
: ðA:6Þ
A.2. Mappings as time-1 flows

We show now that map (1) can be seen as the time-1 flow of a given Hamiltonian system. More precisely we show that
T

x1

x2

x3

x4

0
BBB@

1
CCCA ¼

cosðx1Þ � sinðx1Þ 0 0
sinðx1Þ cosðx1Þ 0 0

0 0 cosðx2Þ � sinðx2Þ
0 0 sinðx2Þ cosðx2Þ

0
BBB@

1
CCCA

x1

x2 þ x2
1 � x2

3

x3

x4 � 2x1x3

0
BBB@

1
CCCA ¼ efHgefVg

x1

x2

x3

x4

0
BBB@

1
CCCA; ðA:7Þ
where
Hðx1; x2; x3; x4Þ ¼ �x1
x2

1 þ x2
2

2
�x2

x2
3 þ x2

4

2
ðA:8Þ
and
Vðx1; x2; x3; x4Þ ¼ �
x3

1

3
þ x1x2

3: ðA:9Þ
Let us observe that H is the sum of two non-interacting harmonic oscillators with frequencies x1 and x2, hence its
dynamics is explicitly given by
x1ðtÞ ¼ A cosðx1tÞ � B sinðx1tÞ;
x2ðtÞ ¼ B cosðx1tÞ þ A sinðx1tÞ;
x3ðtÞ ¼ C cosðx2tÞ � D sinðx2tÞ;
x4ðtÞ ¼ D cosðx2tÞ þ C sinðx2tÞ:

8>>><
>>>: ðA:10Þ
By definition ~y ¼ efHg~x is the solution at time 1 with initial condition~x ¼ ðx1; x2; x3; x4ÞT, hence we obtain
y1 ¼ cosðx1Þx1 � sinðx1Þx2;

y2 ¼ sinðx1Þx1 þ cosðx1Þx2;

y3 ¼ cosðx2Þx3 � sinðx2Þx4;

y4 ¼ sinðx2Þx3 þ cosðx2Þx4;

8>>><
>>>: ðA:11Þ
that is
efHg

x1

x2

x3

x4

0
BBB@

1
CCCA ¼

cosðx1Þ � sinðx1Þ 0 0
sinðx1Þ cosðx1Þ 0 0

0 0 cosðx2Þ � sinðx2Þ
0 0 sinðx2Þ cosðx2Þ

0
BBB@

1
CCCA

x1

x2

x3

x4

0
BBB@

1
CCCA: ðA:12Þ
From (A.9) and the definition (A.2) we easily get
fVg :¼ @x2 V@x1 � @x1 V@x2 þ @x4 V@x3 � @x3 V@x4 ;

¼ x2
1 � x2

3

� 	
@x2 � 2x1x3@x4 :

ðA:13Þ
This means that once applied to a vector~x only the second and fourth components of fVg~x will be non-zero and moreover
they only depend on the first and third components of~x, hence fVg2~x ¼ ~0. We can thus conclude that "k P 2 and 8~x 2 R4,
we get fVgk~x ¼~0. Finally using the definition (A.4) we obtain
efVg~x ¼
X1
k¼0

fVgk

k!
~x ¼ I~xþ fVg~x ¼

x1

x2 þ x2
1 � x2

3

x3

x4 � 2x1x3

0
BBB@

1
CCCA: ðA:14Þ
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A.3. Computation of the generator F under the assumption RV � 0

Let us recall that the composition of maps expressed by exponential defines the warped addition
efAgefBg :¼ efAg�fBg; ðA:15Þ
whose first terms are
fAg � fBg ¼ fAg þ fBg þ 1
2
ðfAgfBg � fBgfAgÞ þ � � � : ðA:16Þ
Using the warped addition with Eq. (13) of Theorem 3.1, we obtain
efFg ¼ e�fVgefðN�GÞVgefRVgefGVg ¼ e�fVg�fðN�GÞVg�fRVg�fGVg ðA:17Þ
and thus
fFg ¼ �fVg � fðN � GÞVg � fRVg � fGVg ¼ �fVg � fð1� GÞVg � fGVg þ oðV2Þ

¼ 1
2
fVgfGVg � fGVgfVgð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ðA:3Þ
f

f
VgGVg

�fGVg

2
666664

3
777775� fGVg þ oðV2Þ ¼ 1

2
ffVgGVg þ 1

4
fffVgGVgGVg|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼oðV2Þ

þ oðV2Þ

¼ 1
2
ffVgGVg þ oðV2Þ; ðA:18Þ
where we explicitly used the assumption RV ¼ 0 to remove the third term on the right hand side on the first equation and
hence to write NV ¼ V . We are thus able to define the non-resonant control term, up to order V2, to be
F2 ¼
1
2
fVgGV ¼ 1

2
fV ;GVg: ðA:19Þ
A.4. The operator G

To get the explicit formula for F2 we need to compute the expression of G. From definition (9) the operator G should satisfy
Gð1� e�fHgÞG ¼ G: ðA:20Þ
To construct it, it will be more convenient to use complex variables
f1 ¼ x2 þ ix1 and f2 ¼ x4 þ ix3: ðA:21Þ
Then the function H becomes
Hðf1; f2Þ ¼ �
x1

2
f1

�f1 �
x2

2
f2

�f2 ðA:22Þ
and using
@

@x1
¼ @f1

@x1

@

@f1
þ @

�f1

@x1

@

@�f1
¼ i

@

@f1
� i

@

@�f1
; ðA:23Þ

@

@x2
¼ @f1

@x2

@

@f1
þ @

�f1

@x2

@

@�f1
¼ @

@f1
þ @

@�f1
ðA:24Þ
for (x1,x2), the operator {H} becomes
@x2 H@x1 � @x1 H@x2 ¼ 2ið@f1 H@�f1
� @�f1

H@f1 Þ ¼ ix1ð�f1@�f1
� f1@f1 Þ ðA:25Þ
with a similar expression holding for (x3,x4). Hence for any ~n ¼ ðn1;n2Þ 2 N2 and ~m ¼ ðm1;m2Þ 2 N2 we obtain
fHgf~n�f~m ¼ iðx1m1 �x1n1 þx2m2 �x2n2Þf~n�f~m ¼ i~x � ð~m�~nÞf~n�f~m; ðA:26Þ
where we introduced the vector ~x ¼ ðx1;x2Þ and we used the compact notation f~n ¼ fn1
1 fn2

2 , for the complex vector
f = (f1,f2).

We note that from the knowledge of the operators’ action on such monomials f~n�f~m, we can reconstruct the operator action
on any regular function. The operators are linear and they will be applied on polynomials in the~x variable, which are nothing
more than polynomials in the complex variables.

Let us now compute the time-1 flow of {H} by using complex variables. Starting from (A.26) and then proceeding by
induction, we can easily prove that for all k 2 N
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fHgkf~n�f~m ¼ ði~x � ð~m�~nÞÞkf~n�f~m ðA:27Þ
and finally
efHgf~n�f~m ¼
X1
k¼0

ði~x � ð~m�~nÞÞk

k!
f~n�f~m ¼ ei~x�ð~m�~nÞf~n�f~m: ðA:28Þ
Similarly e�fHgf~n�f~m ¼ e�i~x�ð~m�~nÞf~n�f~m.
Assuming a non-resonance condition
~x � ð~m�~nÞ – 2kp 8~n –~m 2 N2 n f0g and 8k 2 Z; ðA:29Þ
a possible choice for the operator G is the following
Gf~n�f~m :¼ 1
1� e�i~x�ð~m�~nÞ N f~n�f~m ðA:30Þ
with
N f~n�f~m ¼ f~n�f~m if ~x � ð~m�~nÞ – 2pk;
0 otherwise:

(
ðA:31Þ
It is easy to check that the operator G defined by (A.30) verifies (A.20). In order to do so we introduce the compact notation
Zn;m :¼ f~n�f~m and �n;m :¼ e�i~x�ð~m�~nÞ: ðA:32Þ
Developing the left hand side of (A.20) and using the linearity of all operators, we get
G 1� e�fHg
� 	

GZn;m ¼ ðG � Ge�fHgÞ 1
1��n;m

Zn;m; ðA:33Þ

¼ 1
1��n;m

GZn;m �
1

1��n;m
Ge�fHgZn;m; ðA:34Þ

¼ 1

ð1��n;mÞ2
Zn;m �

1
1��n;m

Gð�n;mZn;mÞ; ðA:35Þ

¼ 1

ð1��n;mÞ2
Zn;m �

�n;m

ð1��n;mÞ2
Zn;m; ðA:36Þ

¼ 1
1��n;m

Zn;m ¼ GZn;m: ðA:37Þ
A.5. Expression of the control term F2

The function F2 is defined by (A.19), where V is a known function. The term GV will be computed starting from the pre-
viously obtained expression of G. To construct F2 we first have to express V in the complex variables (A.21):
Vðf1; f2Þ ¼ �
1

24
if3

1 þ
1
8

i�f1f
2
1 �

1
8

i�f2
1f1 þ

1
24

i�f3
1 þ

1
8

if1f
2
2 �

1
4

if1f2
�f2 þ

1
8

if1
�f2

2 �
1
8

i�f1f
2
2 þ

1
4

i�f1
�f2f2 �

1
8

i�f1
�f2

2: ðA:38Þ
By the linearity of the operator, and by using (A.30), we easily compute GV . In particular we apply G to each term of (A.38).
Then using the inverse change of coordinates
x1 ¼
1
2

ið�f1 � f1Þ and x2 ¼
1
2
ðf1 þ �f1Þ ðA:39Þ
(similar expressions hold for (x3,x4) and ðf2;�f2Þ), we can go back to the original variables ~x. The obtained expression after
some algebraic simplifications is
GV ¼ � 1=6 csc ð3=2x1Þ½x2 cosð1=2x1Þ þ x1 sinð1=2x1Þ�½x2
1 � 3x2

3 þ x2
2 þ ð2x2

1 � 6x2
3 þ x2

2Þ cosðx1Þ � x1x2 sinðx1Þ�

þ 1=4
sinðx2Þ

cosðx1 �x2Þ � cosðx2Þ
� 1=4

ð�x2x2
4 þ x2x2

3 þ 2x1x4x3Þ sinðx2Þ
cosðx2Þ � cosðx1 þx2Þ

: ðA:40Þ
Then the explicit expression of the control term F2 is
F2 ¼ 1=2 x2
1 � x2

3

� 	
�1=6 cscð3=2x1Þ cosð1=2x1Þ x2

1 � 3x2
3 þ x2

2 þ 2x2
1 � 6x2

3 þ x2
2

� 	
cosðx1Þ � x1x2 sinðx1Þ

� 	�
� 1=6 cscð3=2x1Þðx2 cosð1=2x1Þ þ x1 sinð1=2x1ÞÞð2x2 þ 2x2 cosðx1Þ � x1 sinðx1ÞÞ

� 1=4
x2

3 � x2
4

� 	
sinðx2Þ

cosðx2Þ � cosðx1 þx2Þ

�
þ 1=4

x1x3ð2x1x3 � 2x2x4Þ sinðx2Þ
cosðx2Þ � cosðx1 þx2Þ

: ðA:41Þ
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